Contents

WYE? – One day at a time

HSSE spotlight – Petroleum sheen vs. biofilm

Good catch/near miss – Highlights

Contractor management - Contractor grading statistics, contacts and resources

Lifting operations
Is there a valid lift plan?
Can the equipment handle the load?
Are all safety devices on the lifting equipment operational?
Is an exclusion zone established and followed?
How do you know?

Follow the Golden Rules of safety.
Every minute. Every hour. Every day.
Believe in zero.
WYE? – What’s your exposure?

One day at a time

As a culture that was all but burned out before the coronavirus pandemic hit, the past few weeks of seismic societal shifts have made us readjust in ways most of us never imagined. For many of us, our home is now our office and doubles as a classroom for those with kids. Others are still forced to go out to work every day in strange, unrecognizable cities. And, as of right now, we don’t have a clear end point to this new way of life, nor any sort of roadmap for navigating a situation like this.

Here are some things we can do to feel better:

- Get plenty of rest/sleep.
- Eat healthy/nutritious foods.
- Exercise – a good walk.
- Stay in touch with friends and loved ones.
- Keep participating in hobbies and activities you enjoy.
- Limit media exposure.
- Stay hydrated – drink plenty of water.
- Seek help if you need it – EAP or the Headspace App.

“DON’T COUNT THE DAYS; MAKE THE DAYS COUNT.”

– MUHAMMAD ALI
HSSE spotlight

Petroleum sheen vs. biofilm

Every year the USPL Control Centers receive calls from concerned citizens who have discovered colorful sheens on water in ditches, ponds and other areas with standing water. Often these sheens are made up of iridescent colorful rainbows which is similar to the sheen we see when oil and gas is spilled on water. If there is no obvious source of petroleum that could have been spilled, the sheen may be a “humic” sheen caused by bacteria. Humic or biological matter is the dark organic material that forms in soil when dead plants and animals decay. This organic material creates a greasy film which can float on the surface of water creating a sheen. This is why it is more commonly described as a biofilm.

When responding to these calls, we can determine the sheen by two main indicators:

- **Disturbance** – A biofilm sheen can usually be differentiated from a petroleum sheen by breaking up the floating material. If the film is disturbed, the sheen will break into small platelets. When petroleum is disturbed, the sheen will try to reform creating ribbons of color.

- **Odor** – Biofilm usually has no odor or smells like dead leaves, while a sheen caused by a spilled petroleum product may smell like gasoline or diesel fuel.

If your senses are failing you, we still have two more options. Sorbent Pads absorb oil and repel water so they can be used to skim petroleum off a water surface. Place a pad on top of the sheen and notice if the pad begins to absorb product. Biofilm cannot be absorbed into the pad which will indicate if the sheen was biofilm or petroleum. Finally, you can try using Hydrocarbon Detection Strips. These strips can be used for testing water to determine the presence of hydrocarbons. However, the strips do have an expiration date and have to be kept in a cool dry location, which at times makes them unreliable.

If the sheen is in fact determined to be petroleum, please follow your pipelines notification procedures to respond to the release accordingly. For additional confirmation or questions consult with your pipeline environmental coordinator.

Can you spot the difference?
Human Performance Principles overview

To help better understand how Human Performance correlates with our line of work at USPL, we are adopting BP’s eight Human Performance Principles. Our Human Performance program is being built around them.

Take some time to familiarize yourself with the eight principles. We recommend having a discussion around them with your team.

Consider using the following questions to guide your conversation:

▶ Can you think about a time when a mistake caused an incident or a problem? What happened?
▶ In that circumstance, could a better design, process or tool have prevented an accident?
▶ How do leaders influence what people do?
USPL is in the process of implementing a Human Performance program that will help us improve how we interact with our facilities, our processes and each other. By understanding the human factors involved in our activities we can reduce errors that can lead to serious accidents.

Above you will find the different focus areas (pillars) that will be part of our implementation program.

We will have additional information for each one of these pillars in subsequent toolkits.

Brief description of each of the pillars:

- **Situational Awareness**: Improving our hazard recognition (WYE?) by adding three more steps (detect, understand and forecast). These steps will help us to understand better what hazards are around us and how to mitigate them.

- **Investigations**: Going deeper into Human factors during incident investigations to find the WHY, not the WHO.

- **Leadership**: Fully implementing the Safety Leadership Principles.

- **Construction and Design**: Understanding human factors when designing and building our facilities.

- **Employee Led Safety**: Having active participation from employee groups to improve our safety culture.

- **Procedures**: Improving the way we write our procedures to make them clearer and error proof. And the application of the TIP tool to improve existing procedures.
Let’s see an example where situational awareness would have helped prevent an incident:

Note: this is a BP incident from Indonesia

- A subcontractor crew was installing a vessel at the plant.
- The vessel was initially positioned using a pallet truck and then lowered onto two lengths of timber.
- Once one side of the vessel has been lowered to the ground, the team lowered the other side using the same process.
- The Task Supervisor (IP) who was not part of the immediate work crew, stepped forward to help remove the timber skid.
- As the IP removed the timber, the crowbar slipped, and the vessel dropped down, pinching the IP’s finger against the concrete.

Let’s see how situational awareness technics could have prevented this accident:

- The team is installing a cooler.
- The team talked about how the job will go if it goes well and wrong. It’s going wrong:
 - If the vessel is not lowered evenly.
 - If somebody moves towards the line of fire or places a body part into pinch points.
- One member of the team is appointed to watch the line of fire.
- The watching team member realizes that the planned method requires an additional person and that the proper way of safely removing the timber was not discussed.
- The watching team member predicts that a crowbar is not stable enough and could slip. He proceeds and calls STOP.
- The work plan is reassessed and nobody gets hurt.

With everything we have in our minds these days, it has never been more important to focus on the task at hand. As we do this, we need to be mindful of what is happening around us too. Being able to focus attention is a useful human skill. Since our childhood we have been trained to turn on a “spotlight” on our task to do it well. However, when we increase our focus, everything outside is hard to see. Once we reach that point, we stop seeing other hazards, changes and alternatives. This situational blindness happens automatically.

What are the conditions that narrow our attention?

- External distractors.
- Focusing on one aspect of the task.
- Work turning more difficult than imagined.
- High pressure situations, feeling rushed or struggling with the task.
- Things starting to go wrong and not as planned.
- Unusual or unfamiliar work.

When we develop Situational Awareness skills we can understand and forecast things that pose a risk to us, our colleagues or our site.

Situational Awareness Skills

Have a good mental model	▶ What going “well” looks like ▶ What going “wrong” looks like
Active look for specific indicators	▶ That things are going well ▶ That things are going wrong
Gather more information and forecast	▶ To foresee how the situations might develop
Feel authority to act	▶ To slow work down ▶ To stop work
Good catch/near miss highlights

What makes a great good catch/near miss?
- **See something** – observe a potentially unsafe condition
- **Say something** – report the near miss to the appropriate parties
- **Do something** – apply corrective action or follow-up

Found unmarked utilities

Good catch: A crew was out on site and noticed that there was a private water faucet and power outlet in the horse pasture. When the Damage Prevention personnel showed up they tried to locate the lines with a safety sweep but couldn’t. The contractor took the time to probe and found it by hand digging. I went to the job site the next day and thanked the crew for taking the time to find it by hand and not to be hurried and let the yellow locator find it.

Discussion: Do you identify positive behaviors, recognize those who have exemplified those behaviors and encourage others to do the same? Do you feel comfortable taking the extra time needed to perform the job safely? Do you have regular conversations to encourage those around you to not rush to complete a job, but rather to focus on proper hazard mitigation?

Not wearing Tyvek suits

Good catch: An operator from a vacuum truck was conducting hydro excavation with exposure to hydrocarbons and was not wearing protective clothing. Work was stopped, a discussion with the team was held and the group got a commitment from the contractor to use Tyvek on this job and in the future with similar situations.

Discussion: Do you feel comfortable discussing HSSE policies with contractors and/or BP employees? Do you look for areas of improvement on site? Are the contractors you work with familiar with BP policies and best practices? Do you feel comfortable approaching someone who is not following policy to discuss concerns?

Flooded secondary containment

Good catch: Upon arrival at a Station, the secondary containment was found to be holding approximately four inches of standing water. The local area had experienced a few days of continuous rains. Upon consulting the technicians who work the facility, they indicated this flooding issue has been ongoing for about 15 years. There is flooded 4160V conduit within this flooded secondary containment. The concern is that this much standing water would pose potential safety hazards should technicians need to perform work orders or be called out to troubleshoot downed equipment or instrumentation. There is also a concern around secondary containment volume being substantially reduced by the four inches of standing water. This condition was reported to the DOM and Safety Coordinator so a remediation plan can be considered and put into place to rectify the unsafe condition.

Discussion: Are there potential unsafe conditions in your work area that should be reported? When was the last time you had to report an unsafe condition to your supervisor? Was the unsafe condition discussed and a plan put in place to rectify the area? Do you routinely look for unsafe conditions prior to starting a task and while performing a task to ensure you and those around you are working safely?

Have a **Good Catch** or **What Good Looks Like** event you want to share?
Report either to the appropriate BP site contact.
USPL has changed the scoring mechanism for average three year total recordable incident rate (TRIR) in ISNetworld. The following scoring will be applied:

<table>
<thead>
<tr>
<th>Total recordable injury rate (TRIR)</th>
<th><=0.24</th>
<th>>0.24–1.5</th>
<th>1.5–2.0</th>
<th>>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>20</td>
<td>16</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

This is also applicable to subcontractors through SHEPPs, i.e. one of the criteria for selecting a sub contractor will be 3-Year Average TRIR of 2.0 or lower.

The weighing criteria for scoring in ISN has changed to align with other downstream entities. Now, there are more emphasis towards policies, procedures and safety cultures of contractors. Please make sure you have up-to-date policies and procedures uploaded into the ISNetworld.

The overall statistics of contractor grading is below:

- **A grade** – 71
- **B grade** – 139
- **C grade** – 22 (6 on variance)
- **D grade** – 18 (3 on variance)

Key BP contacts

- **Anar Khalilov**
 HSSE Analytics & Contractor Management Specialist
 anar.khalilov@bp.com

- **Mary Anderson**
 EPIC HSSE Project Coordinator
 andersm3@bp.com

- **Juan Ortega**
 HSSE Manager
 Juan.Ortega@bp.com

- **Lindsey Coffield**
 Safety Advisor
 lindsey.coffield@bp.com

- **John Diendorf**
 Procurement
 john.diendorf@bp.com

Contractor information website

The USPL contractor information website contains important information to assist you in working safety with USPL, including HSSE policies, forms, toolkits, BP-specific programs, links to industry websites and OQ training information. Access the website at: